תגובת סתירה   עודכן לאחרונה!


תגובת סתירה

תגובת סתירה

אחת מהתגובות החשובות בעולם החומצות והבסיסים היא תגובת סתירה.

למעשה, הכוונה לתגובה המתרחשת בין יוני ההידרוקסיד OH‾(aq) ליוני ההידרוניום H3O+(aq).

כבר למדנו שתמיסה המכילה יוני הידרוניום בעודף היא תמיסה חומצית ואילו תמיסה המכילה יוני הידרוקסיד בעודף היא תמיסה בסיסית.

כיוון שהחומצה, לפי הגדרת ברונסטד ולאורי, נוטה למסור פרוטון ואילו הבסיס, לפי הגדרת  ברונסטד ולאורי, נוטה לקלוט פרוטון בתגובה, כשיון של חומצה ויון של בסיס באים במגע זה עם זה, יוני ההידרוקסיד מקבלים פרוטונים מיוני ההידרוניום. ניסוח התגובה נראה כך:

H3O+(aq)    +   OH‾(aq)        →        2H2O(ℓ)

הבסיס או התמיסה הבסיסית, המכילה יוני הידרוקסיד, סותרת את החומצה או את התמיסה החומצית שמכילה יוני הידרוניום.
או לחילופין, החומצה, או התמיסה החומצית המכילה יוני הידרוניום, סותרת את הבסיס או את התמיסה הבסיסית, המכילה יוני הידרוקסיד.

שימו לב ♥ שתגובה זו היא בעצם תגובת חומצה-בסיס, כי יוני ההידרוניום מסרו פרוטון ואילו יוני ההידרוקסיד קלטו פרוטון.

דבר חשוב הנובע מתוך ניסוח התגובה הנתונה ויש לזכור אותו ✍ הוא ש

יחס המולים בזמן תגובה בין יוני הידרוקסיד ליוני ההידרוניום (וכמובן להיפך) הוא תמיד 1:1.

OH‾(aq) H3O+(aq)
1 : 1 יחס מולים

נראה מספר דוגמאות:

  1. לתמיסת החומר HCℓ(aq) מוסיפים NaOH(s) . נסחו את התהליך המתרחש.
    ראשית נתונה התמיסה HCℓ(aq).
    עלינו לזכור שהחומר HCℓ הוא אחד מהחומרים שבמגע עם מים מתנהג כחומצה ויוצר תמיסה חומצית.

    לכן כשמתייחסים לתמיסתו המימית של החומר, בעצם מתייחסים למה שמתקבל כשהחומר HCℓ(g) בא במגע עם המים, לפי מה שלמדנו בשיעור הקודם.
    הנה הניסוח
    { HCl }_{ (g) }+{ { H }_{ 2 }O }_{ (l) }\longrightarrow \underbrace { { { H }_{ 3 }O }_{ (aq) }^{ + }+{ Cl }_{ (aq) }^{ - } }_{ { HCl }_{ (aq) } }

    כפי שלמדנו בפרק מבנה וקישור כאשר מעוניינים להתייחס לתמיסה של חומר יוני קל תמס כמו מלח בישול לעיתים רושמים NaCℓ(aq), אך למעשה מתכוונים ליונים הממוימים שיש בתמיסה שלו על-פי הניסוח הבא :
    { NaCl }_{ (s) }\xrightarrow { { H }_{ 2 }O } \underbrace { { Na }_{ (aq) }^{ + }+{ Cl }_{ (aq) }^{ - } }_{ { NaCl }_{ (aq) } }

    התמיסה מכילה את היונים הממוימים.
    נחזור לתמיסת החומצה HCℓ(aq) . התמיסה מכילה יוני הידרוניום H3O+(aq) ויוני כלור Cℓ ‾(aq).
    לתמיסה זו, כאמור, הוסיפו את החומר NaOH(s).
    כיוון שחומר זה הוא חומר יוני, כפי שכבר ראינו בשלב הקודם, הוא יתמוסס ויתקבלו יונים ממוימים באופן הבא :
    { NaOH }_{ (s) }\xrightarrow { { H }_{ 2 }O } { Na }_{ (aq) }^{ + }+{ OH }_{ (aq) }^{ - }

    יוני ההידרוניום שבתמיסה יגיבו עם יוני ההידרוקסיד שנוצרו, על-פי הניסוח שהראינו:

    H3O+(aq)    +   OH‾(aq)        →        2H2O(ℓ)

    וזה תהליך הסתירה .

    ניסוח זה נקרא גם ניסוח נטו של התהליך, כי יוני הנתרן Na+(aq) ויוני הכלור Cℓ ‾(aq) אינם באים לידי ביטוי בתהליך הם יונים משקיפים. להזכירכם למדנו על יונים משקיפים בפרקים מבנה וקישור וסטוכיומטריה. יונים משקיפים נמצאים בתמיסה ואינם משתתפים בתהליך. משום כך הרכבם הכימי ומספרם אינם משתנים.
    למעשה, בכל תהליך שבו ישנם יוני הידרוניום, ומוסיפים להם חומר היוצר יוני הידרוקסיד בתמיסה או תמיסה המכילה כבר יוני הידרוקסיד, תתרחש תגובת הסתירה.
    כלל זה תקף גם אם התהליך הפוך כלומר בכל תהליך שבו משתתפים יוני הידרוקסיד ומוסיפים להם חומר היוצר יוני הידרוניום בתמיסה או תמיסה המכילה כבר יוני הידרוניום, תתרחש תגובת הסתירה.

  1. לתמיסת KOH(aq) מוסיפים H2SO4(ℓ). נסחו את התהליך המתרחש.
    כעת נקצר תהליכים. אנו צריכים לזהות שהחומר KOH הוא חומר יוני ולכן תמיסתו המימית תכיל יוני הידרוקסיד OH‾(aq). אם אינכם זוכרים, נסחו את תגובת ההמסה של חומר זה במים.
    החומר H2SO4(ℓ) שייך לרשימת החומרים שיוצרים תמיסה חומצית ולכן כש- H2SO4(ℓ) יוכנס לתמיסה, ייווצרו יוני הידרוניום שמיד יגיבו עם יוני ההידרוקסיד שבתמיסה באופן הבא:

    H3O+(aq) + OH‾(aq)        →        2H2O(ℓ)

    החומצה H2SO4(ℓ) היא חומצה דו פרוטית ולכן במגע עם מים נוצרים 2 מול יוני הידרוניום על כל מול חומצה כפי שלמדנו בשיעור הקודם. להלן הניסוח:

    H2SO4(ℓ) + 2H2O(ℓ)        →        2H3O+(aq) + SO42(aq)

    אין זה משנה את העובדה שבזמן התגובה יוני ההידרונים מגיבים עם יוני ההידרוקסיד תמיד ביחס של 1:1.

 

תהליך הסתירה, כאמור, הוא תהליך שבו יוני הידרוקסיד סותרים תמיסה חומצית המכילה יוני הידרוניום או להיפך.

הסתירה יכולה להיות מלאה או חלקית.

בתהליך סתירה מלאה מספר המולים של יוני ההידרוקסיד שווה למספר המולים של יוני ההידרוניום. במצב זה מתרחשת תגובה שלמה בין יוני ההידרוניום ליוני ההידרוקסיד. בסוף התהליך לא נשאר עודף מיוני ההידרוניום או מיוני ההידרוקסיד. לכן התמיסה היא ניטרלית מבחינת מדד החומציות. בהמשך נראה שלמדד הזה קוראים pH וערכו = 7 כשהתמיסה ניטרלית מבחינת מידת החומציות או הבסיסיות שלה.(נזכיר שבמצב זה קיימים בתמיסה יוני הידרוניום ויוני הידרוקסיד בריכוז שווה שמקורם מפירוק המים)

יכולה להיות גם סתירה חלקית. במצב של סתירה חלקית מספר המולים של יוני ההידרוקסיד אינו שווה למספר המולים של יוני ההידרוניום בכלי התגובה. במקרה זה יישאר עודף של יוני הידרוניום או של יוני הידרוקסיד משום שחלקם אינו מגיב. מיד נראה דוגמאות לסתירה חלקית.

  • אם נותרים בתמיסה יוני הידרוניום לאחר התגובה, פירושו של דבר שיש עודף של יוני הידרוניום. התמיסה בסוף התהליך היא תמיסה  חומצית.
  • אם נותרים בתמיסה יוני הידרוקסיד לאחר התגובה, פירושו של דבר שיש עודף של יוני הידרוקסיד. התמיסה בסוף התהליך היא תמיסה  בסיסית.

לפני שניגש לתגובת סתירה ונראה חישובים הקשורים לכך, נתבונן בדוגמא מחיי היומיום:

בחנות מוכרים סוכרייה בשקל אחד. אם נרצה לקנות 5 סוכריות נצטרך לשלם 5 שקלים.
אבל אם יש לנו 4 שקלים נוכל לקנות רק 4 סוכריות ולא חמש.
או לחילופין, אם יש לנו 6 שקלים נוכל לקנות 5 סוכריות ויישאר לנו עודף של שקל אחד.

אם נוסיף לתמיסה המכילה 5 מול יוני הידרוניום 5 מול יוני הידרוקסיד, הכמויות שנתונות יגיבו בשלמות ולא יישארו עודפים של יוני הידרוניום או יוני הידרוקסיד. זאת משום שהיונים, כפי שכבר אמרנו, מגיבים תמיד ביחס של 1:1. התמיסה בסוף התהליך תהיה ניטרלית.

אבל אם לתמיסה המכילה 5 מול יוני הידרוניום נוסיף 4 מול יוני הידרוקסיד, לא כל יוני ההידרוניום יגיבו, כי 4 מול יוני הידרוקסיד יכולים להגיב רק עם 4 מול יוני הידרוניום.
בתמיסה יישאר עודף של 1 מול יוני הידרוניום שאינו מגיב. לכן התמיסה תהיה  חומצית.
נוכל לתאר זאת בטבלה הבאה:

OH‾(aq) H3O+(aq)
1 : 1 יחס מולים
(יחס קבוע)
4 : 5 n התחלה(מול)
4 : 4 n תגובה(מול)
(תמיד על-פי יחס המקדמים)
1 n סוף(מול)

בדוגמה הנתונה מספר המולים של יוני ההידרוקסיד הוא הגורם המגביל בתהליך, כי יוני ההידרוקסיד מגיבים בשלמותם ולא נותר מהם עודף (שארית) בתום התהליך.(העודף שנותר מהם קטן מאוד וזניח)

עד כה טרם למדנו על תגובות שבהם נותרת שארית של מגיבים. זהו היבט של נושא חישובי מולים וצריך להכיר אותו רק בפרק הזה של חומצות ובסיסים.

  • במקרה של תגובת הסתירה כיוון שיחס המקדמים הוא 1:1 (וניתן להכליל זאת לכל מקרה בו היחס הוא כזה או דומה לו, כמו למשל 2:2 או 3:3 וכו')

    מספר המולים בשלב התגובה יקבע על-פי החומר עם מספר המולים הקטן יותר.

 

נתבונן בדוגמה אחרת:

לתמיסה המכילה 4 מול יוני ההידרוניום הוסיפו 5 מול יוני הידרוקסיד.
לא כל יוני ההידרוקסיד יגיבו כי 4 מול יוני הידרוקסיד יכולים להגיב רק עם 4 מול יוני הידרוניום.
בתמיסה יישאר עודף של 1 מול יוני הידרוקסיד שלא הגיב ולכן התמיסה תהיה בסיסית.

נוכל לתאר את התהליך גם בטבלה הבאה:

OH‾(aq) H3O+(aq)
1 : 1 יחס מולים
(זהו יחס קבוע)
5 : 4 n התחלה(מול)
4 : 4 n תגובה(מול)
(תמיד על-פי יחס המקדמים)
 1 n סוף(מול)

נראה דוגמאות לשאלות הקשורות לתגובת הסתירה וגם לחישובים המבוססים על תגובה זו.

להלן דוגמאות לשאלות שבהן מתרחשת סתירה מלאה כלומר אין שאריות/עודפים של יוני הידרוניום או יוני הידרוקסיד. בסוף התהליך התמיסה היא ניטרלית.

  1. איזה נפח של תמיסת NaOH(aq) בריכוז 1M צריך כדי לסתור (סתירה מלאה) 200 מ"ל תמיסת HCℓ(aq) בריכוז 2M?
    שימו לב ♥ לדברים הבאים:
    החומר HCℓ הוא אחד מהחומרים שעלינו לזכור שתמיסתו המימית היא חומצית, כלומר מכילה יוני הידרוניום על-פי הניסוח הבא:

    HCℓ(g) + H2O(ℓ)        →        H3O+(aq) + Cℓ ‾(aq)

    מומלץ לרשום את הניסוח בפתרון השאלה.
    מה שחשוב להבין מהניסוח, גם אם לא רושמים אותו וזוכרים בעל-פה, שיחס המולים בין החומצה HCℓ ליוני ההידרוניום H3O+(aq) הוא 1:1 כיוון ש HCℓ  היא חומצה חד-פרוטית.
    החומר השני הוא NaOH. זהו חומר יוני שתמיסתו מכילה יוני הידרוקסיד על-פי הניסוח הבא :
    { NaOH }_{ (s) }\xrightarrow { { H }_{ 2 }O } { Na }_{ (aq) }^{ + }+{ OH }_{ (aq) }^{ - }

    גם כאן יחס המולים בין NaOH ליוני ההידרוקסיד, במקרה זה, הוא 1:1.
    אין חובה לנסח את התהליך. אפשר לראות שמדובר בחומר יוני, שבכל יחידה אחת של הנוסחה האמפירית NaOH יש 1 יוני הידרוקסיד. כפי שלמדנו כבר בפרק מבנה וקישור חומרים יונים.
    כשנערבב בין התמיסות תתרחש תגובת סתירה בין יוני ההידרוקסיד ליוני ההידרוניום לפי ניסוח נטו הבא :

    H3O+(aq) + OH‾(aq)        →        2H2O(ℓ)

    היחס בין יוני ההידרוקסיד ליוני ההידרוניום הוא 1:1 .
    כעת נוכל לגשת לחישובים:
    איזה נפח של תמיסת NaOH(aq) בריכוז 1M צריך כדי לסתור סתירה מלאה 200 מ"ל תמיסת HCℓ(aq) בריכוז 2M?
    נתחיל מתמיסת החומצה HCℓ(aq) כי בשאלה נתונים ריכוזה ונפחה. נתונים אלו מאפשרים לנו לחשב גם את מספר המולים שלה.

    H3O+(aq) HCℓ(aq)
    1 : 1 יחס מולים
    2 C(M)
    0.2 V תמיסה
    (ליטר)
    0.4 \xrightarrow { \times \frac { 1 }{ 1 }  } n=C×V
    n=2×0.2=0.4
    n (מול)

    נחשב את מספר המולים של יוני OH‾(aq) הדרושה לתגובה מלאה כפי שנתבקשנו בשאלה.

    OH‾(aq)   H3O+(aq)  
    1 : 1 יחס מולים
    0.4 \xrightarrow { \times \frac { 1 }{ 1 }  } 0.4 n (מול)

    ועכשיו נוכל לחשב את נפח תמיסת ה- NaOH(aq) בריכוז 1M

    NaOH(aq) OH‾(aq)
    1 : 1 יחס מולים
    0.4 \xrightarrow { \times \frac { 1 }{ 1 }  } 0.4 n (מול)
    1 C(M)
    V=\frac { n }{ C } =\frac { 0.4 }{ 1 }= 0.4 V תמיסה
    (ליטר)

    תשובה: נפח תמיסת ה- NaOH(aq) הוא 0.4 ליטר.

  2. איזה נפח של תמיסת H2SO4(aq) בריכוז 0.5M צריך כדי לסתור סתירה מלאה 400 מ"ל תמיסת KOH(aq) בריכוז 1.3M?
    הסבר בקצרה.
    אין צורך לרשום הסבר זה בפתרון השאלה, אלא אם מבקשים לנסח את התהליכים המתרחשים בין החומרים הנתונים למים.

    H2SO4 היא חומצה. בתמיסה מימית היא יוצרת תמיסה חומצית ויש לזכור את הניסוח הבא:

    H2SO4(ℓ) + 2H2O(ℓ)        →        2H3O+(aq) + SO42(aq)

    החומר KOH יוצר במים תמיסה בסיסית על-פי הניסוח הבא:
    { KOH }_{ (s) }\xrightarrow { { H }_{ 2 }O } { K }_{ (aq) }^{ + }+{ OH }_{ (aq) }^{ - }

    בשאלה יש נתונים מספיקים כדי להתחיל את החישוב עבור תמיסת ה-KOH(aq):

    OH‾(aq) KOH(aq)
    1 : 1 יחס מולים
    1.3 C(M)
    0.4 V תמיסה
    (ליטר)
    0.52 \xrightarrow { \times \frac { 1 }{ 1 }  } n=C×V
    n=1.3×0.4=0.52
    n (מול)
    H3O+(aq)   OH‾(aq)  
    1 : 1 יחס מולים
    0.52 \xrightarrow { \times \frac { 1 }{ 1 }  } 0.52 n (מול)

    נזכיר שהחומצה H2SO4(ℓ) היא היחידה שיש לזכור שיחס המולים בין החומצה ליוני ההידרוניום הוא 1:2 (הניסוח רשום למעלה).

    H2SO4(aq) H3O+(aq)
    1 : 2 יחס מולים
    0.26 \xrightarrow { \times \frac { 1 }{ 2 }  } 0.52 n (מול)
    0.5 C(M)
    V=\frac { n }{ C } =\frac { 0.26 }{ 0.5 } =0.52 V תמיסה
    (ליטר)

    תשובה: נפח תמיסת ה- H2SO4(aq) הוא 0.52 ליטר.

  3. מה ריכוז תמיסת ה- HNO3(aq) בנפח 2 ליטר הנדרש כדי לסתור סתירה מלאה 1500 מ"ל תמיסת Ba(OH)2(aq) בריכוז 1.6M?
    נזכיר שאין חובה לנסח את תהליך ההמסה של החומר Ba(OH)2(s).
    למי שזה מקל עליו, כדאי לנסח את תהליך ההמסה כחלק מהטיוטה.
    החומר Ba(OH)2(s) יוצר במים תמיסה בסיסית על-פי הניסוח הבא:
    { { Ba(OH) }_{ 2 } }_{ (s) }\xrightarrow { { H }_{ 2 }O } { Ba }_{ (aq) }^{ 2+ }+{ 2OH }_{ (aq) }^{ - }

    נתחיל מתמיסת ה- Ba(OH)2(aq) כי יש נתונים מספיקים לחישוב מספר המולים שלה:

    OH‾(aq) Ba(OH)2(aq)
    2 : 1 יחס מולים
    1.6 C(M)
    1.5 V תמיסה
    (ליטר)
    4.8 \xrightarrow { \times \frac { 2 }{ 1 }  } n=C×V
    n=1.6×1.5=2.4
    n (מול)
    OH‾(aq)   H3O+(aq)  
    1 : 1 יחס מולים
    4.8 \xrightarrow { \times \frac { 1 }{ 1 }  } 4.8 n (מול)

    כעת נתייחס לחומר HNO3(aq) שהוא אחד החומרים המופיעים ברשימת החומצות שיש לזכור למבחן הבגרות. תמיסתו המימית של חומר זה היא חומצית על-פי הניסוח:
    HNO3(ℓ) + H2O(ℓ)        →        H3O+(aq) + NO3(aq)

    HNO3(aq) H3O+(aq)
    1 : 1 יחס מולים
    4.8 \xrightarrow { \times \frac { 1 }{ 1 }  } 4.8 n (מול)
    2 V תמיסה
    (ליטר)
    C=\frac { n }{ V } =\frac { 4.8 }{ 2 } = 2.4 C(M)

    תשובה: ריכוז תמיסת ה- HNO3(aq) הוא 2.4M.

  4. מה ריכוז תמיסת ה- Ba(OH)2(aq) בנפח 800 מ"ל הנדרש כדי לסתור סתירה מלאה 1200 מ"ל תמיסת HCℓ(aq) בריכוז 1.5M?
    H3O+(aq) HCℓ(aq)
    1 : 1 יחס מולים
    1.5 C(M)
    1.2 V תמיסה
    (ליטר)
    1.8 \xrightarrow { \times \frac { 1 }{ 1 }  } n=C×V
    n=1.5×1.2=1.8
    n (מול)
    OH‾(aq)   H3O+(aq)  
    1 : 1 יחס מולים
    1.8 \xrightarrow { \times \frac { 1 }{ 1 }  } 1.8 n (מול)
    Ba(OH)2(aq) OH‾(aq)
    1 : 2 יחס מולים
    0.9 \xrightarrow { \times \frac { 1 }{ 2 }  } 1.8 n מול
    0.8 V תמיסה
    (ליטר)

    C=\frac { n }{ V } =\frac { 0.9 }{ 0.8 } = 1.125

    C(M)

    תשובה: ריכוז תמיסת ה- Ba(OH)2(aq) הנדרש לסתירה מלאה הוא 1.125M.

כעת נראה דוגמאות לתהליכים שבהם נשאר עודף.

נזכיר שבתהליכים שבהם נשאר עודף, יש לבדוק מאיזה חומר נשאר עודף כדי לקבוע אם התמיסה בסוף התהליך, בסיסית או חומצית.

איך נדע אם ה\שאלה כוללת חישובי עודפים?

בשאלות אלו, כמו שנראה, יש נתונים מספקים כדי למצוא מספר מולים עבור שני חומרים. לכן יש לבדוק איזה מבין החומרים נמצא במספר שמגבילה את התרחשות התהליך. כשאחד החומרים נגמר, אין לחומר השני, הנמצא בעודף, עם מה להגיב ולכן נשאר ממנו עודף.

להלן דוגמאות:

  1. מערבבים תמיסת HNO3(aq) בנפח של 2 ליטר ובריכוז של 3M עם 1500 מ"ל תמיסת Ba(OH)2(aq) בריכוז 1.6M .
    האם החומרים מגיבים בשלמות? אם לא, האם התמיסה בתום התגובה, חומצית או בסיסית?
    מה ריכוז היון שקובע את סוג התמיסה בסוף התהליך? פרטו חישוביכם.
    שימו לב ♥
    ראשית, השאלה עוסקת בחומצה HNO3 כלומר בחומר היוצר תמיסה חומצית במים ומצוי ברשימת החומרים שיש לזכור את תגובת ההמסה שלהם במים, ובחומר היוני Ba(OH)2 שתמיסתו מכילה יוני הידרוקסיד לכן תמיסתו בסיסית.

    שנית, ניתן לחשב עבור כל אחד מהחומרים מהו מספר המולים. לפי נתונים אלו אפשר לחשב את מספר המולים של יוני ההידרוניום ויוני ההידרוקסיד שיש בכל אחת מהתמיסות.

    OH‾(aq) Ba(OH)2(aq)
    2 : 1 יחס מולים
    1.6 C(M)
    1.5 V תמיסה
    (ליטר)
    4.8 \xrightarrow { \times \frac { 2 }{ 1 }  } n=C×V
    n=1.6×1.5=2.4
    n (מול)
    H3O+(aq) HNO3(aq)
    1 : 1 יחס מולים
    3 C(M)
    2 V תמיסה
    (ליטר)
    6 \xrightarrow { \times \frac { 1 }{ 1 }  } n=C×V
    n=3×2=6
    n (מול)

    כעת נבצע את ההשוואה בתהליך הסתירה, המתרחש בערבוב התמיסות.

    OH‾(aq)   H3O+(aq)  
    1 : 1 יחס מולים
    4.8 : 6 n (מול) התחלה
    4.8 \xleftarrow { \times \frac { 1 }{ 1 }  } 4.8 n (מול) תגובה
       1.2 n (מול) סוף

    שימו לב לטבלה האחרונה.
    בטבלה מופיע מספר המולים של יוני ההידרוניום ויוני ההידרוקסיד שהיו בהתחלה בכל אחת מהתמיסות לפני הערבוב .
    לאחר מכן, מופיע מספר המולים שהגיבו בפועל. במקרה הזה ובכל מקרה שבו יחס המולים הוא 1:1 (או יחס דומה למשל 2:2) החומר עם מספר המולים הקטן יותר ייגמר ראשון כלומר מספר המולים שלו תיגמר ראשונה. זו המספר המגבילה, ועל-פי מספר זו אפשר לחשב את המספר המגיבה מהחומר השני. בדוגמה זו המספר המגבילה היא של יוני ההידרוקסיד, ולכן החץ שורטט מכיוון יוני ההידרוקסיד ליוני ההידרוניום.
    מספר המולים בשלב התגובה (n תגובה) הוא תמיד על-פי יחס המקדמים בתגובה, ובכל מקרה כיוון שיחס המקדמים הוא 1:1, מספר המולים של שני החומרים תהיה זהה למספר המגבילה. באמצעות נתון זה נוכל לחשב כמה מול יהיו בעודף/לא יגיבו .

    כעת נוכל לענות על השאלות השונות הכלולות בשאלה .
    האם החומרים מגיבים בשלמות? אם לא, האם התמיסה, חומצית או בסיסית?
    החומרים לא הגיבו בשלמות. יש עודף של יוני ההידרוניום (1.2 מול) ולכן התמיסה בסוף התהליך היא חומצית.
    מה ריכוז היון שקובע את סוג התמיסה בסוף התהליך? פרטו חישוביכם.
    כדי לחשב את הריכוז של היון שקובע את סוג התמיסה בסוף התהליך, נחשב על-פי הנוסחה: C=\frac { n }{ V }

    מספר המולים בעודף הוא 1.2 מול.
    שימו לב לנפח התמיסה: מכיוון שנשאלנו על סוף התהליך, לאחר ערבוב התמיסות, נפח התמיסות יהיה סכום הנפחים של שתי התמיסות. במקרה זה:
    3.5 ליטר = 1.5+ 2 = נפח התמיסה הכולל.
    כעת נחשב את ריכוז היונים בסוף התהליך
    :

    C=\frac { n }{ V } =\frac { 1.2 }{ 3.5 } = 0.342M

    תשובה: ריכוז היון שקובע את סוג התמיסה בסוף התהליך הוא 0.342M.

  2. מערבבים תמיסת H2SO4(aq) בנפח של 0.4 ליטר ובריכוז של 1.2M עם 500 מ"ל תמיסת NaOH(aq) בריכוז 0.6M .
    האם החומרים מגיבים בשלמות? אם לא, האם התמיסה בתום התגובה, חומצית או בסיסית?
    מה הריכוז של היון שקובע את סוג התמיסה בסוף התהליך? פרטו חישוביכם.
    NaOH(aq) – התמיסה הבסיסית

    OH‾(aq) NaOH(aq)
    1 : 1 יחס מולים
    0.6 C(M)
    0.5 V תמיסה
    (ליטר)
    0.3 \xrightarrow { \times \frac { 1 }{ 1 }  } n=C×V
    n=0.6×0.5=0.3
    n מול

    H2SO4(aq) – התמיסה הבסיסית

    H3O+(aq) H2SO4(aq)
    2 : 1 יחס מולים
    1.2 C(M)
    0.4 V תמיסה
    (ליטר)
    0.96 \xrightarrow { \times \frac { 2 }{ 1 }  } n=C×V
    n=1.2×0.4=0.48
    n מול

    כעת נבצע השוואה בין מספר המולים של יוני ההידרוקסיד למספר היונים של ההידרונים בתגובת הסתירה המתרחשת בערבוב בין התמיסות:

    OH‾(aq)   H3O+(aq)  
    1 : 1 יחס מולים
    0.3 : 0.96 n (מול) התחלה
    0.3 \xleftarrow { \times \frac { 1 }{ 1 }  } 0.3 n (מול) תגובה
      0.66 n (מול) סוף

    החומרים לא הגיבו בשלמות. יש עודף של יוני הידרוניום (0.66 מול), ולכן התמיסה בסוף התהליך היא חומצית.
    כעת נחשב את ריכוז יוני ההידרוניום בסוף התהליך.

    כדי לחשב את הריכוז של היון שקובע את סוג התמיסה בסוף התהליך, נחשב על-פי הנוסחה: C=\frac { n }{ V }

    מספר המולים הוא 0.66 מול כפי שעולה מן החישובים בסעיף הקודם.
    שימו לב לנפח התמיסה: מכיוון שמדובר בסוף התהליך לאחר ערבוב התמיסות, נפח התמיסה יהיה סכום הנפחים של שתי התמיסות. במקרה זה:
    0.9 ליטר = 0.5+ 0.4 = נפח התמיסה הכולל.
    כעת נחשב את ריכוז היונים בסוף התהליך
    :

    C=\frac { n }{ V } =\frac { 0.66 }{ 0.9 } = 0.733M

    הריכוז של היון שקובע את סוג התמיסה בסוף התהליך הוא 0.733M.

  3. מערבבים תמיסת HBr(aq) בנפח של 800 מ"ל ובריכוז של 0.4M עם 1200 מ"ל תמיסת Ba(OH)2(aq) בריכוז 2M .
    האם החומרים מגיבים בשלמות? אם לא, האם התמיסה בתום התגובה, חומצית או בסיסית?
    מה ריכוז היון שקובע את סוג התמיסה בסוף התהליך? פרטו חישוביכם.
    Ba(OH)2(aq) – התמיסה הבסיסית

    OH‾(aq) Ba(OH)2(aq)
    2 : 1 יחס מולים
    2 C(M)
    1.2 V תמיסה
    (ליטר)
    4.8 \xrightarrow { \times \frac { 2 }{ 1 }  } n=C×V
    n=2×1.2=2.4
    n מול

    HBr(aq) – התמיסה הבסיסית

    H3O+(aq) HBr(aq)
    1 : 1 יחס מולים
    0.4 C(M)
    0.8 V תמיסה
    (ליטר)
    0.32 \xrightarrow { \times \frac { 1 }{ 1 }  } n=C×V
    n=0.4×0.8=0.32
    n מול

    כעת נבצע השוואה בין מספר המולים של יוני ההידרוקסיד למספר המולים של יוני ההידרוניום בתהליך הסתירה המתרחש בערבוב בין התמיסות:

    OH‾(aq)   H3O+(aq)  
    1 : 1 יחס מולים
    4.8 : 0.32 n (מול) התחלה
    0.32 \xrightarrow { \times \frac { 1 }{ 1 }  } 0.32 n (מול) תגובה
     4.48   n (מול) סוף

    החומרים לא הגיבו בשלמות יש עודף של יוני הידרוקסיד (4.48 מול). לכן ניתן לקבוע שהתמיסה בסוף התהליך היא בסיסית.
    כעת ניגש לחישוב ריכוז יוני ההידרוקסיד בסוף התהליך.

    כדי לחשב את הריכוז של היון שקובע את סוג התמיסה בסוף התהליך, נשתמש בנוסחה: C=\frac { n }{ V }

    מספר המולים הוא 4.48 מול (חישבנו בסעיף הקודם).
    שימו לב: מכיוון שמדובר בסוף התהליך לאחר ערבוב התמיסות, נפח התמיסה הכולל יהיה סכום הנפחים של שתי התמיסות. במקרה זה:
    2 ליטר = 1.2 + 0.8 = נפח התמיסה הכולל.
    כעת נחשב את ריכוז היונים בסוף התהליך
    :

    C=\frac { n }{ V } =\frac { 4.48 }{ 2 } = 2.24M

    ריכוז היון שקובע את סוג התמיסה בסוף התהליך הוא 2.24M.

שוב נזכיר:

בתגובות סתירה היחס בין מספר יוני ההידרוניום, ליוני ההידרוקסיד הוא תמיד 1:1 בתגובה שביניהם. זו תגובת הנטו של התהליך.
לכן אם כמויות המולים של היונים האלו אינן שוות אחת לשנייה, מספר המולים המגבילה בתגובה תהיה של היון שמספרו היא הקטנה יותר.
מהיון שמספר המולים שלו היא הגדולה יותר, תישאר שארית (עודף), במספר השווה להפרש בין הערך הגדול לערך הקטן בכמויות המולים הנתונות (או שחישבנו) של יוני ההידרוניום ויוני ההידרוקסיד.

רצוי, בכל מקרה, לעבוד על-פי הטבלה שראינו בדוגמאות בשיעור:

OH‾(aq) H3O+(aq)
1 : 1 יחס מולים
n (מול) התחלה
n (מול) תגובה
n (מול) סוף